Lyapunov stability analysis of a string equation coupled with an ordinary differential system
نویسندگان
چکیده
This paper considers the stability problem of a linear time invariant system in feedback with a string equation. A new Lyapunov functional candidate is proposed based on the use of augmented states which enriches and encompasses the classical Lyapunov functional proposed in the literature. It results in tractable stability conditions expressed in terms of linear matrix inequalities. This methodology follows from the application of the Bessel inequality together with Legendre polynomials. Numerical examples illustrate the potential of our approach through three scenari: a stable ODE perturbed by the PDE, an unstable openloop ODE stabilized by the PDE and an unstable closed-loop ODE stabilized by the PDE.
منابع مشابه
Stability analysis of impulsive fuzzy differential equations with finite delayed state
In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...
متن کاملExponential Lyapunov Stability Analysis of a Drilling Mechanism
This article deals with the stability analysis of a drilling system which is modelled as a coupled ordinary differential equation / string equation. The string is damped at the two boundaries but leading to a stable open-loop system. The aim is to derive a linear matrix inequality ensuring the exponential stability with a guaranteed decay-rate of this interconnected system. A strictly proper dy...
متن کاملBoundary Control of Axially Moving Continua: Application to a Zinc Galvanizing Line
In this paper, an active vibration control of a tensioned, elastic, axially moving string is investigated. The dynamics of the translating string are described with a non-linear partial differential equation coupled with an ordinary differential equation. A right boundary control to suppress the transverse vibrations of the translating continuum is proposed. The control law is derived via the L...
متن کاملInput / Output Stability of a Damped String Equation coupled with Ordinary Differential System
The input/output stability of an interconnected system composed of an ordinary differential equation and a damped string equation is studied. Issued from the literature on time-delay systems, an exact stability result is firstly derived using pole locations. Then, based on the Small-Gain theorem and on the Quadratic Separation framework, some robust stability criteria are provided. The latter f...
متن کاملStability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations
In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....
متن کامل